
 Ensuring ABI
stability in Fedora

Flock 2016

Presented by,
Dodji Seketeli <dodji@fedoraproject.org>
Sinny Kumari <sinnykumari@fedorapoject.org>

 2

Agenda

➢ What we mean by “ABI”?
➢ ABI compatibility
➢ Fedora ABI compatibility verification tooling
➢ ABI change reports examples
➢ Possible improvements

 3

What we mean by “Application
Binary Interface”

● Context:
– A binary “E” which uses code from binary “L”

● “E” can be:
– Executable
– Shared library

● “L” can be:
– Shared library
– Dynamically loaded module

 4

What we mean by “Application
Binary Interface”

● At execution time, “E” expects properties from “L”

– Format, architecture

– Presence of certain symbols

– Specific layout of data

– Etc …

● Those properties are structural, not behavioral

 5

What we mean by “Application
Binary Interface”

● These loose and unwritten structural
expectations between “E” & “L” are the ABI.

● We talk specifically about the ABI of a binary:
– The set of symbols it defines and exports

– The layout of data expected by these symbols

– Etc …

 6

ABI changes are inevitable

● Shared libraries need to evolve
– Bug fixes

– Features

● New functions and global variables will be
added

● Types of existing functions are going to change

 7

Need to detect harmful changes

● Only ABI-incompatible changes are harmful
● For instance:

– Removal of existing functions
– Incompatible data layout changes

● Removal of a struct data member
● Insertion of a new data member in the middle of a struct
● Removal of a function parameter

● ABI-compatible changes are fine
● Need to detect ABI-incompatible changes

– By looking at the binaries only
– As soon as possible

● Many ABI changes need a human to determine compatibility
– We are using the “diff” paradigm to represent an ABI change
– So people can review “ABI diffs” rather than “source code diffs”

 8

Fedora ABI compatibility verification
tooling

● For each koji package update build:
– ABI-compare the new package to the old one

– Send a message to package maintainer with the
“ABI diff”

● Some automatic categorization of ABI changes
– Incompatible ABI changes flagged as FAILED

– Gray area changes flagged as NEED INSPECTION

– Identical ABIs flagged as PASSED

 9

Fedora ABI compatibility verification
tooling

● Based on Taskotron
– Taskotron task named 'abicheck'
– Compares ABI of new package against previous version tagged as stable

– Uses libabigail 'abipkgdiff' command line tool for ABI comparison
● Package maintainers can use libabigail command line tools offline

– “fedabipkgdiff”

● Upstream hackers too!
– “abipkgdiff”
– “abidiff”

● Everyone should review the ABI changes of their shared library before releasing!

● Limitations
– C/C++ shared libraries

– Runs on a sub-set of critpath packages

http://admin.fedoraproject.org/pkgdb/api/critpath

 10

ABI change report example

● Real example from
https://taskotron.fedoraproject.org/artifacts/all/6
ee5e57e-525d-11e6-ae46-
525400120b80/task_output/gpgme-1.6.0-
3.fc23.log

 11

ABI change report example (1/3)

* ABI changes found between gpgme-1.4.3-6.fc23.x86_64.rpm and gpgme-
1.6.0-3.fc23.x86_64.rpm. ABI comparison took 3.18 second(s). Please
review them.

========== changes of 'libgpgme-pthread.so.11.11.0 ===============

Functions changes summary: 0 Removed, 1 Changed (115 filtered out), 7 Added functions

Variables changes summary: 0 Removed, 0 Changed, 0 Added variable

 12

ABI change report example (2/3)

 7 Added functions:

 'function const char* gpgme_get_dirinfo(const char*)' {gpgme_get_dirinfo@@GPGME_1.1}

 'function int gpgme_get_offline(gpgme_ctx_t)' {gpgme_get_offline@@GPGME_1.1}

 'function void gpgme_get_status_cb(gpgme_ctx_t, gpgme_status_cb_t*, void**)'
{gpgme_get_status_cb@@GPGME_1.1}

(...)

 13

ABI change report example (3/3)

* 1 function with some indirect sub-type change:

 [C]'function gpgme_error_t gpgme_cancel(gpgme_ctx_t)' at gpgme.c:194:1
has some indirect sub-type changes:

 parameter 1 of type 'typedef gpgme_ctx_t' has sub-type changes:

 underlying type 'gpgme_context*' changed:

 in pointed to type 'struct gpgme_context' at context.h:76:1:

 type size changed from 1664 to 1792 bits

 3 data member insertions:

 'unsigned int gpgme_context::offline', at offset 416 (in bits) at
context.h:102:1

 'gpgme_status_cb_t gpgme_context::status_cb', at offset 1216 (in bits)
at context.h:139:1

 'void* gpgme_context::status_cb_value', at offset 1280 (in bits) at
context.h:140:1

 14

Improvement directions

● Taskotron / Fedora infra level
– More memory and processors for a given task

– Handle suppression specifications for tests in general

● Task-abicheck level
– Gradually increase the set of ABI-verified packages

– Take package API (devel sub-package) into account

● Abipkgdiff / libabigail level
– Decrease memory usage for pathological cases

– Support more C/C++ language constructs

– Better ABI change categorization

– More web friendly reporting

– Dedicated ABI changes tracking web service

 15

Questions?

➢ https://fedoraproject.org/wiki/Taskotron/Tasks/abicheck

➢ https://fedoraproject.org/wiki/ABICompatibilityDefinitions

➢ https://taskotron.fedoraproject.org/resultsdb/results?testcase_name=dist.abicheck

➢ https://www.sourceware.org/libabigail/wiki

https://fedoraproject.org/wiki/Taskotron/Tasks/abicheck
https://fedoraproject.org/wiki/ABICompatibilityDefinitions
https://taskotron.fedoraproject.org/resultsdb/results?testcase_name=dist.abicheck
https://www.sourceware.org/libabigail/wiki

 16

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

